(OMP
110

CL13: Big-O Notation



Announcements

e Exercise 4 - List Utils
o ‘“extend” should not be using in built-in extend method!
o I'll extend the deadline through fomorrow for you to make changes
o After you re-submit exercise, submit a regrade request!

e Quiz 03

o Multiple Choice: Big-O Runtime, Unit Tests, Dictionaries
Memory Diagram: Dictionaries, Functions

Short Response: Unit Tests and Dictionary Syntax
Function Writing: Dictionaries

Monday'’s class will be a virtual review session!!!

O O O O



Recall: Algorithms

Input is data given to an algorithm
An algorithm is a series of steps
An algorithm returns some result

An algorithm may be influenced by
its environment and it may
produce side-effects which
influence its environment.

Algorithm Result!

oV

Environment

- . O O g S S S e R By g, s Eam S Dy g e S o o mam S B e S



What is an algorithm??

e A set of steps to solve a general problem
e Finite
e Can handle a problem of arbitrary size



How do we measure how “good” an algorithm is”?

e Isitcorrect?
e How long does it take to implement?
e How much computer memory does it take?



Why do we care about computation speed?

e Security: Cryptography works because encrypted information takes too long
to decipher!

e User Experience: Users don’t want to work with a slow application!

e Big Data: We want to be able to feed as much data as possible into our
systems, but we need a way to efficiently do that!



Measurements We Use

e () “Big O”: upper bound (worst case runtime)
e () “Big Omega”: lower bound (best case runtime)

e (® “Big Theta”: average runtime



Returning to Finding the Lowest Card in a Deck

e Go from left to right
e Remember the lowest card you've seen so far and compare it to the next
cards



Finding the Lowest Card

Low card:




Finding the Lowest Card

Low card:




Finding the Lowest Card

Low card: a



Finding the Lowest Card

Low card:




Finding the Lowest Card

Low card:




Finding the Lowest Card

4 actions for

Low card: input of 4 cards.




Finding the Lowest Card

4 actions for
input of 4 cards.
y 4 —
Q/ n actions for
e input of size n.

Low card:




Finding the Lowest card

e In this approach, we always have to check every card in the deck, so our
runtime will always be approximately n where n is the size of the deck.

Finding the minimum € O(n)
Finding the minimum € (n)

Finding the minimum € ©(n)



Speed vs. Memory

e Sometimes you can make a tradeoff between speed and memory.
e E.g. storing a value rather than computing it repeatedly.



O 00O NO UL A WN R

NNNNNRRRRBRRRBRRBRR
B WNROWOWOONOOTUD,WNR®S

def

def

find_minl(nums: list[int]) -> int:
min_idx: int = @
idx: int =0
while idx < len(nums):
if nums[idx] < nums[min_idx]:
| min_idx = idx
idx += 1
return min_idx

find_min2(nums: list[int]) -> int:
min_idx: int = @
min_val: int = nums[min_idx]
idx: int =0
while idx < len(nums):
val: int = nums[idx]
if val < min_val:
min_idx = idx
min_val = val
idx += 1
return min_idx

search_vals: list[int] = [10, 9, 8]
find_minl(search_vals)
find_min2(search_vals)



New Example: Finding a specific card.

e Go from left to right
e The first time you see your card, exit!



Finding 3




Finding 3




Finding 3




Worst Case

What is the worst case input for this algorithm? (What will make us look at the
most cards before exiting?)

What is the Big-O (worst case) runtime in terms of deck size n?



