
CL13: Big-O Notation

Announcements

● Exercise 4 - List Utils
○ “extend” should not be using in built-in extend method!
○ I’ll extend the deadline through tomorrow for you to make changes
○ After you re-submit exercise, submit a regrade request!

● Quiz 03
○ Multiple Choice: Big-O Runtime, Unit Tests, Dictionaries
○ Memory Diagram: Dictionaries, Functions
○ Short Response: Unit Tests and Dictionary Syntax
○ Function Writing: Dictionaries
○ Monday’s class will be a virtual review session!!!

Recall: Algorithms

Input is data given to an algorithm

An algorithm is a series of steps

An algorithm returns some result

An algorithm may be influenced by
its environment and it may
produce side-effects which
influence its environment.

What is an algorithm?

● A set of steps to solve a general problem
● Finite
● Can handle a problem of arbitrary size

How do we measure how “good” an algorithm is?

● Is it correct?
● How long does it take to implement?
● How much computer memory does it take?

Why do we care about computation speed?

● Security: Cryptography works because encrypted information takes too long
to decipher!

● User Experience: Users don’t want to work with a slow application!
● Big Data: We want to be able to feed as much data as possible into our

systems, but we need a way to efficiently do that!

Measurements We Use

● “Big O”: upper bound (worst case runtime)

● “Big Omega”: lower bound (best case runtime)

● “Big Theta”: average runtime

Returning to Finding the Lowest Card in a Deck

● Go from left to right
● Remember the lowest card you’ve seen so far and compare it to the next

cards

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

Finding the Lowest Card

Low card:

4 actions for
input of 4 cards.

Finding the Lowest Card

Low card:

4 actions for
input of 4 cards.

→
n actions for

input of size n.

Finding the Lowest card

● In this approach, we always have to check every card in the deck, so our
runtime will always be approximately n where n is the size of the deck.

Speed vs. Memory

● Sometimes you can make a tradeoff between speed and memory.
● E.g. storing a value rather than computing it repeatedly.

New Example: Finding a specific card.

● Go from left to right
● The first time you see your card, exit!

Finding 3

Finding 3

Finding 3

Worst Case

What is the worst case input for this algorithm? (What will make us look at the
most cards before exiting?)

What is the Big-O (worst case) runtime in terms of deck size n?

