
Recursion

Outline

● Functions ↔ Python programs
● Function outputs as sequences
● Recursive definition of functions
● Recursive Python programs

Motivation

Why recursion?
● Some programming languages are built entirely around recursive structures
● Some functions, sets, or sequences are best represented via recursion
● Helpful representation for proving things about your functions

f(n) = n

Sequence of outputs for n ≥ 0:

Recursive Definition of a Function

● Calling a function within itself, typically with a smaller input.
● Two components:

○ Base case(s)
■ Where recursion ends
■ Often smallest input(s)
■ Prevent infinite loops!

○ Recursive Rule
■ Definition to handle all inputs that aren’t base case.
■ Expresses function in terms of smaller calls to the function.

● (e.g. expressing f(n) in terms of f(n-1))

f(n) = n

Recursive definition:
● Base case:

● Recursive rule:

Input 0 1 2 3 4 5 6 … n

Output 0 1 2 3 4 5 6 … f(n)

In Python

In Python

Summary

● Recursion is another way of defining functions
● Helpful to represent it as a sequence of inputs/outputs to get an idea of the

recursive rule

More on Recursion

Goal

● Define the function f(n,b) = n + b, recursively on n
● Steps

○ Write out sequence of input/outputs
○ Use sequence to determine recursive definition
○ Translate recursive definition into Python program

